Universal quantum computing with spin and valley states

نویسندگان

  • Niklas Rohling
  • Guido Burkard
چکیده

We investigate a two-electron double quantum dot with both spin and valley degrees of freedom as they occur in graphene, carbon nanotubes or silicon and regard the 16-dimensional space with one electron per dot as a four-qubit logic space. In the spin-only case, it is well known that the exchange coupling between the dots combined with arbitrary single-qubit operations is sufficient for universal quantum computation. The presence of valley degeneracy in the electronic band structure alters the form of the exchange coupling and, in general, leads to spin–valley entanglement. Here, we show that universal quantum computation can still be performed by exchange interaction and singlequbit gates in the presence of an additional (valley) degree of freedom. We present an explicit pulse sequence for a spin-only controlled-NOT consisting of the generalized exchange coupling and single-electron spin and valley rotations. We also propose state preparations and projective measurements with the use of adiabatic transitions between states with (1,1) and (0,2) charge distributions similar to the spin-only case, but with the additional requirement of controlling the spin and valley Zeeman energies by an external magnetic field. Finally, we demonstrate a universal two-qubit gate between a spin and a valley qubit, allowing universal gate operations on the combined spin and valley quantum register. 1 Author to whom any correspondence should be addressed. New Journal of Physics 14 (2012) 083008 1367-2630/12/083008+19$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-217842 Erschienen in: New Journal of Physics ; 14 (2012), 8. 083008

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid spin and valley quantum computing with singlet-triplet qubits.

The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley sta...

متن کامل

Quantum Computing with Spin and Valley Qubits in Quantum Dots

This thesis addresses the concept of quantum computing with semiconductor quantum dots. The basic unit of a quantum computer is a quantum mechanical two-level system, the so-called quantum bit (qubit). The qubit can be defined as the spin of an electron confined in a quantum dot or as a two-dimensional subspace of the Hilbert space for several spins. Some semiconductors have several minima in t...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

اثرات ناخالصی‌های مغناطیسی بر عبور الکترون از یک نانو حلقه کوانتومی

In this paper we study the Aharonov-Bohm oscillations of transmission coefficient for an electron passing through a quantum nanoring with two identical magnetic impurities using quantum waveguide theory. It is shown that the Aharonov-Bohm oscillations are independent of the coupling constant between the electron and magnetic impurities for the singlet spin state of impurities, while for the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012